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Least-squares time-delay estimation for transient signals
in a multipath environment

R. J. Vaccaro, C. S. Ramalingam, and D. W Tufts
Department of Electrical Engineering, The Unnvrsiity ofRhode Isand, Kingyton. Rhode llonrd 02881

R.L. Field
Naval Research Laboratory Detachment, Stennis Space Center. Mississippi 39529.5004

(Received 15 June 1991; revised I October 1991; accepted 9 February 1992)

The problem of estimating the arrival times of overlapping ocean-acoustic signals from a noisy
received waveform that consists of scaled and delayed replicas of a deterministic transient
signal is considered. It is assumed that the transmitted signal and the number of paths in the
multipath environment are known, and an algorithm is developed that gives least-squares
estimates of the amplitude and time delay of each path. A method is given to ensure that the
global minimum of the error surfoce is found in spite of the existence of numerous local
minima. The algorithm is then extended to the case in which the transmitted signal is not
known precisely, but is assumed to belong to a parametric class of signals. The extended
algorithm additionally obtains the parameters that clihacterizc thc tiansmitted signal. '1 he
algorithm is demonstrated on the class of signals consisting of gated sinusoids, using both
simulated and experimental data.

PACS numbers: 43.60.Gk, 43.3OWi, 43.30.Ma

INTRODUCTION The classical method for estimating the times of arrival

Time delay estimation is a well-known problem occur- is correlating the received waveform with the transmitted

ring frequently in the fields of sonar, radar, and geophysics. waveform.2 The peaks in the correlator output give the esti-

In this problem, the received waveform consists of delayed mates of the arrival times. It can be shown that if the signals

and scaled replicas of the transmitted signal. This is the re- are separated in time by more than the duration of the signal

suit of multiple reflections and attenuation of the signal in autocorrelation function, the correlator is equivalent to the

the channel. maximum-likelihood estimator.3 Other approaches are giv-

The received waveform r(t) can be described math- en in Refs. 4, 5, 6, and 7.

ematically as A completely different approach was recently proposed
'%I by Kirsteins. ' The basic idea of this approach is to view 'he

r(t)= I as(t - rk) + n(t), 0<t<T, (1) problem in the frequency domain. Since a delay in dhe time
k I domain is equivalent to multiplication by an exponential in

where s(t) is the transmitted signal, a, is the attenuation the frequency domain, the corresponding frequency domain
factor for path k, rk is the time delay for path k, M is the problem is one of fitting weighted complex exponentials to
number of different paths, and n(t) is the inevitable noise the spectrum of the received signal. Utilizing an iterative
component corrupting the received signal. We say that s(t) method of fitting complex exponentials as in Refs. 10 and 11,
is a deterministic signal, which means that we do not assume this approach provides a way of estimating the times of arriv-
any statistical properties for the signal such as its power al. However, this algorithm does not work if the Fourier
spectral density. The signal waveform itself is used by the transform of the source signal has any nulls (zeros) in the
algorithms developed in this paper. For the purposes of this regions of its spectral support. Even if a spectral sample does
paper, we define a transient signal to be a signal whose dura- not fall exactly on a null, a small sample value could cause
tion is less than 2 s. serious numerical ill-conditioning of the algorithm. Hence

Even though Eq. (1) has been stated in continuous time, we cannot apply this method for a source signal such as a
any practical implementation using digital processing tech- gated sinusoid. More importantly, the delay estimates ob-
niques would deal only with discrete-time samples. Hence, tained via this method are biased and do not correspond to
in what follows we will consider only discrete-time signals. the true parameter estimates, as demonstrated in Sec. IV A.
Further, we will assume that the noise is white Gaussian. We In addition, contiguous frequency samples have to be con-
will also assume that the number of paths M is known. This sidered, which might not be desirable, as will be explained
latter assumption is not as restrictive as it appears to be, sincc lati.
in many cases the number of paths zan be determined quite All the above methods require the source signal to be
reasonably from the bathymetry of the channel, the approxi- known. In this paper, we develop an algorithm for the case of
mate locations of the transmitter and receiver, the sound a known source, and then extend this algorithm to the case in
velocity profile, and a propagation model.' which the source signal is not known precisely, but is as-
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sumed to belong to a parametric class of signals. That is, we ed sum ot'complex cxpomcntials. For coinputci impicoicnia-
assume that the transmitted signal waveform depends on the tion, we sample in the frcquency domn.tinal .It Ilicr'" zl, t .Xw
values of certain constant parameters (i.e., the parameters Hence,
are not random variables). Our objective, then, will be to ... .. .

obtain good estimates for the delays and at the same time

extract the parameters of the source signal. An example of a where

parametric class of signals is the class of rectangular pulses. ; A ý- - r, Aid. 5)
A signal in this class is characterized by three parameters: The integrals are then replaced by sumN, and the ý,quared
duration, amplitude, and starting point.

In the next section, we set up the least-squares problem scale factor im2-fh
to be solved. In Sec. II, we develop an algorithm assuming
that the transmitted signal is known. Section III extends this > R []-S[, N' ,
algorithm to the case when the signal is unknown, but can be
described by a set of parameters. In Sec. IV we give the re- (6)
sults of the known signal and the unknown signal algorithms where S[ nI =S( nA•a;O) and RI n] R (n.1v) The
using simulated as well as experimental data. The transmit- above error expression will be used to develop both the
ted signal is a gated sinusoid in these examples. In Sec. V we known signal and the unknown signal algorithms. For the
give a discussion of the results. Finally, Sec. VI contains the known signal case, the parameter vector 0 in Eq. (6) is fixed
,.onciusions. and is not included in the minimization, whereas for the

unknown signal case Eq. (6) is minimized with respect to all
the parameters.

1. THE LEAST-SQUARES ESTIMATOR I!. THE KNOWN SIGNAL ALGORITHM FOR

NARROWBAND SIGNALS

Assuming the source signal to belong to a parametric In this section we consider the case when the source
class of signals, the sampled received waveform can be mod- signal is known. In the next section, we show how theeled assgnliknw.nthnetscinweso hwte

e known-signal algorithm can be used iteratively in the case

rfn] = j, as[n - rk;O] + w[n], 0<n<N - 1, when the signal is not known.
k=i •When the signal is narrow band, most of the energy of

(2) the signal is concentrated in the passband. For example, if

where 0 is the vector of parameters that characterize the the signal were a gated sinusoid, most of its energy is concen-

source signal. If the noise w[n I is white Gaussian, then the trated near the main lobe in the frequency domain. Recall
least-squares estimator is also the maximum likelihood esti- that the spectrum ot a gated sinusoid is a sine function cen-
mator. 2 The squared error function is given by tered at the frequency of the sinusoid. In this case, we do not

r M . have to include all frequency points in the minimization but
E(O,-rk,ak)= [ [r[n]-- • as[n - -ik;O]], (3) consider only those values near the main lobe. Going even

-= L ki -'further, one need not again include all frequency points near

and the objective is to minimize E with respect to all of its the main lobe, but only those which have significant signal
arguments. energy. That is, one can threshold the signal spectrum and

In the above time-domain formulation of the problem, consider only those points which are above this value. This
we are restricted to values of r,- that are integer multiples of has the advantage of working only with those frequency
the basic sampling interval. If a more accurate estimate is points having good signal-to-noise ratios. Also, since the re-
required, then one has to resort to interpolation. This incon- ceived and the modeled signal are real, only half the signal
venience can be avoided by transforming the problem to the spectrum needs to be considered because of its con jugate
frequency domain, where rk can take on a contin•,um of syinimetiy. The expression for the error in Eq. (6) is thus
values. rewritten as,

The data record in (1) exists in the time interval [0,T].
If this data record is set to zero fort <0 and t> T, then the E(Xi) R [n -S
summand in Eq. (3) will be zero outside the range a, e"

O<n<N - 1. Thus we can extend the summation range from
minus infinity to plus infinity in (3) and invoke Parseval's where . is the vector of scaled delays [see Eq. (5)1 and i is a
theorem to get vector of amplitudes. (The tildes are used now to avoid cum-

E(O,7-k,ak) berqc,,,•, notation in subsequent developments.) The nota-
12 tion ne I 'means that the summation is over those values of n

21r R W -- S(oi;O;) ae dto, (4) which belong to the set. J ', and not necessarily over contigu-
-- "~ k, - Ious values. The set. I 'consists of those frequency points at

where R (w) and S(w;6) are the discrete-time Fourier trans- which the magnitude of the signal spectrum exceeds a
forms of r! n I and s [ n;O ], respectively, threshold. A rule-of-thumb is to set this threshold to roughly

The problem, now, is to approximate R (oa) by a weight- one-twentieth to one-tenth tht peak magnitude of the signal
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sptrum. Since matrix notation leads to succinct expres- (rj,) ( ,
sions, let us define the following: P' P, r r = , a .. (12)

•'=(A1A2 '" .•()0 al 0,
A=(Rq,]A AM),l ..- gtq/ kO)
F = (R tqJ R [q, I ... R [ qJ, It is easy to see that for a = 0, the error function in Eq. ( I I)

a = (a, a,) ", allows the amplitudes to be complex since there is no penalty

S =diag(S [q1 ] S [q2  ... S [q, ), attached to the imaginary part. As a increases, the penalty

A '/k A on the imaginary part increases, and in the limit as a- x,

e' q' the amplitudes are constrained to be purely real, Note that

A(,k) -1= IA::: ... 1A W9 the model for the channel assumes the amplitudes to be real.
: :' With the above modification of the error expression, the

A,q., . . A mv] procedure to minimize E,, (),,a) is as follows: Initially, a is
set equal to zero. Then E, (X,a) is minimized with respect to

P(A.) = SA(X). (8) X and a. The minimum yields a biased estimate of., but one
which is reasonably close to the true value. To estimate the

where qk 1.i, k = 1,2,....,N denote the frequency samples true delay values, a is increased gradually and the minimum
that are selected. Hence Eq. (7) can be recast as of E. (A,a) is found for each a. The minimum of E, (XA,a)

E(ki) =Ili - P(A)Al12. (9) yields the final parameter estimates. This method of using a

This is the error expression considered in Ref. 9. However, in quadratic penalty function to impose a nonlinear constraint
is known to converge to a minimum of the true error sur-

that work the amplitudes were allowed to be complex. As

mentioned in the Introduction, this leads to a biased estimate face.'"
For any fixed A. and a, the best a which minimizes

of the delay parameters if the SNR were not sufficiently high E

(we show this in Sec. IV A). But an important advantage of E. (.,a) is given by

allowing complex-valued amplitudes is that the correspond- a = (pHp) - p1r. ( 3)
ing error surface is reasonably smooth, making it easier L,, Substituting this value of a in Eq. ( 11 ) we get
find its global minimum. On the other hand, while the global
minimum of the error surface defined by Eq. (9) with the E (A.) = [I - p(pHp) --'P ]rIJ2

amplitudes constrained to be real yields the true delay pa-
rameters, finding this minimum is extremely difficult as the = IP~rII2, C ! ")
surface is characterized by numerous closely spaced local where P' = I - p(p"p) - •'p, and now the error is a func-
minima. We now outline a procedure that leads us to this tion of the delay parameter vector A only. In the next subsec-
global minimum, starting with the error surface correspond- tion, we present a Gauss-Newton approach to find the mini-
ing to the complex amplitudes, mum of E. (X).

The key step that helps us to achieve the transition from
the biased error surface (due to the complex amplitudes) to
the true error surface (due to the real amplitudes) is to re- A. A Gauss-Newton approach to minimizing E. (k)
write Eq. (9) explicitly in terms of real and imaginary partsof each of the terms involved, and add a penalty term to the A common algorithm for minimizing an objective func-
imaginary part of the complex amplitude. That is, let tion, which is expressed as a squared norm, is the Gauss-

Newton algorithm,' 3'. 4 This algorithm uses a first-order
(p )a 2 perturbation expansion to convert the nonlinear minimiza-

Ea (A.,a) = r- P. /a, + aija, 112, tion problem to a linear one. A sequence of linear problems
r Pi P,)a + 11', are then solved until the solutions converge. In this section,

(10) we derive the formulas needed to implement the Gauss-
Newton algorithm for the error function in Eq. ( 11).

where We begin by considering the value of the error function

r,= Re{fi}, r= Im{i}, at an increment AX away from the nominal value of k, i.e.,

P, =Re{P(k)}, P, = Im{P(A)}, En (,X + A) =11 [I - P(A. + Ak)(P"(4 -t A )

a,= ReWi}, a, = Im{r}. xP(k + AA)) 'P"(A + X A)]rIl2.

Rewriting the right-hand side 'f Ec. (I)) a- a singlc (C15)

norm, we get To simplify the above equation, we consider a first-order
r,) p_ ( Pr i 2 perturbation expansion of P(k + Ak):

(X) P , P(k + AM =-- P i- AP, 16)

(0 0 al where _-. means "equal to first order," and AP is a matrix
which is a linear function of AX. Substituting this expansion

=hr - P(.)a 2 , ( 11) of P(A + AU) into Eq. (15) and retaining only first order

where terms (see Ref. 15 for details) we get
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E,, (AX + A;L) -Pr - P t (AP)(PT"P) 'P"r scribed in Rets. 17 and 18. We used the coordinate desxcnt
algorithm on E, (A) given in (14) with a -z- 0 to obtain iF-

_ p(pitp) '(Ap)"~p'rt-, (17) tial estimates for the known signal algorithm.

where the superscript H denotes complex-conjugate trans-
pose. Using the definition of P from Eq. ( 12) it can be veri-
fied that Ill. THE UNKNOWN SIGNAL ALGORITHM

QP, QP, We now address the problem of time-delay estimation

AP= - - QP, QP, (18) when the source signal is unknown. In this case, the source

0 AA parameter vector 0 will also enter the minimization in Eq.
(3). In the algorithm outlined below, we assume the source 4

s to belong to a parametic class of signals, viz.. gated sinu-
where soids of unknown frequency and duration..

First, we observe that the source signal can completely
Q = diag{q, q2  ... q.}, be specified (except for a real-valued scale factor) by its fre-

2 " ),quency, duration, starting point, and phase. If the frequency
and duration are such that there are many cycles of the signal

AA= diag{AXI. present, then we need not precisely determine the phase,
which can be set equal to zero. Also, since all time delays are

Since relative to the source pulse, the starting point can be as-
yy sumed to be at t = 0, without loss of generality.

With the above assumptions, the overall problem re-
diag{x, X, ... XL duces to minimizing

min ,,• R[nJ-S[n;f,d] ae'

diag{y, y, }) x wherefand d are the frequency and duration of the transmit-
ted signal, respectively. This expression is not easy to mini-

\xL) mize with respect to all the parameters simultaneously. In-
stead, we resort to an iterative minimization technique

we can pull diag{AX;AXI} to the end in the second and third outlined below.
terms on the right-hand side of Eq. (17), and further sim- (1) Obtain initial estimates off and d". i.e., of the
plify to get unknown frequency and duration, respectively.

E, (,k + AA) = Ix - BAXIV, (19) (2) Usef and d'in the known signal algorithm to esti-
mate 3. and a'.

where (3) Using the estimated .' and a', calculate f' 1 and

x = P'r, d 1.

B' = P'Sdiag{(P"P) -- 'PHr} (4) Check for convergence to return to step 2.

We now show how to calculate f'" ' and d' ' men-
+ p(p P) - .diag{STPIrI., tioned in step 3. Consider the error function for a given k and

B B'(:,I:M) + B'(:,(M + 1):2M). a:

(Note that we have used standard MATLAB notation in the E(f,d) = R mn -Sjn;f,d ]
definition of B, which is derived from B' by summing the ,. R I

firstMcolumns with its second Mcolumns.) From Eq. (19) Here, E(f,d) is nonlinear infand d and an analytical mini-
we can solve for the best AX (in the least-squares sense) as mization is again very difficult. We simplify the minimiza-

AX = B~x tion by taking advantage of the fact that d is a discrete vari-
able since the signal is sampled, i.e., only finite number of

= (BOB)-- 'Bnx. (20) values for dare possible. Hence, E(fd) can be minimized as

Now, X is replaced by3 + ±AX and the procedure is repeated follows:
t, ii 2,!; <-c. In many cses, it mighit be desirable not to !) Carry a scarch over values of d near tne previous
make large changes in A to avoid oscillations. If so, the least- estimate.
squares solution in Eq. (20) is replaced by a constrained (2) For each d, find the best value off using a gradient
least-squares solution," where IIAXII is restricted to not to descent technique.
exceed a specified value, say &. (3) Repeat step 2 until minimum is found.

An initial value for the parameter vector X must be esti- The final question is how to obtain f' and d". In our
mated before (20) can be used to obtain improved param- model we assume that the first path is the least attenuated
eter estimates. A standard procedure for generating initial one and that its amplitude is greater than that of the noise.
estimates is the coordinate descent algorithm which is de- There may or may not be pulses from other paths overlap-
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ping with the first. With these assumptions we get rough
initial guesses forf° and do.

(i) Obtain the envelope of the signal. ", ,
(i0) Obtain the high-amplitude portion of the received I H I

waveform by finding that part of the signal envelope which
exceeds a threshold. Let (t,,t 2 ) be the interval in which the
envelope exceeds the threshold. Choose do = (t, - t, )/2. 2

(iii)f° is obtained using any standard frequency estima- .
tcr on the signal in the interval (t1 ,t, ).

This completes the description of the unknown source
algorithm.

IV. ALGORITHM PERFORMANCE

In this section we show the performance of the algor- 0 U.. ........ .. . . 007. -008 . ..... ..I

ithms described in the previous sections using synthetic sig- Ra, time .....
nals as well as experimental data. We first present a one-path
example to illustrate the nature of the E,(X) and E. (k) FIG. 2. Errorsurfac.sE,(A) andE (.) for the iigh.."SNR rTcCIvd Signal
error surfaces. We then demonstrate the effect of increasing of Fig. 1.

a on Ea (k). Finally, results on experimental data using the
known- and the unknown-signal algorithms are presented.

A. A one-path example to compare error surfaces SNR signal. In Fig. 2 we show the corresponding error sur-

As mentioned in Sec. II, the true parameter estimates faces, E, (.) and E_ (A.). The smooth error surface is
are obtained from the global minimum of E_ (X). However, E, (A-), while the sinusoidal surface is E. (X). Both have the
its minimum is difficult to find. On the other hand, the error same global minimum, but E, (A) is easier to minimize,
surfaceE 0 (k) iseasier towork with, but its global minimum since it is unimodal. However, when the SNR is not high
yields an increasingly biased estimate of X with decreasing enough, the global minima of these two surfaces can be dis-
SNR. We now illustrate the nature of Eo (A) and E_ (A) tinctly different. Figure 3 shows the low SNR received wave-
error surfaces with a one-path example to highlight the diffi- form, with the corresponding error surfaces in Fig. 4. In this
culties involved. example, the minimum of Eo(.) is approximately at

A synthetic received signal is considered. It was con- t = 0.049s, while that ofE, (X) isstillat t = 0.05s. ltcanbe
structed by delaying a 244-Hz, 40-ms duration sinusoid by seen that if the time-delay obtained from the biased error
50 ms and adding computer generated white Gaussian noise. surface is used, the true error can be quite large. This is more
The error surface (plotted as a function of relative delay) so in the M-path case. Hence, one has to minimize E., (4) to
should have a minimum at t = 0.05 s. We consider two cases, obtain unbiased parameter estimates. This fact was first not-
viz., high and low SNRs. (We use the terms "high" and ed in Ref. 19.
"low" SNR in a qualitative sense.) Figure 1 shows the high

0!

0 ' 0

• 0o.o05 0o. 0 .5 02 025 0.3 0,35 04 045 0. o1 .5 02 0. - -0.4 ........ (L45 OS

"lime (secs.) Time (sees)

FIG. 1. Received signal at high SNR for a synthetic one-path example. FIG. 3. Received signal at low SNR for a synthetic one-path example.
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FIG. 6. The geometry of the channel used for the cxpcrinienis

0 d 01 002 003 1 .)04 0(05 00 007 008 009 0 1

Relatlv lTime DCy :secs)

FIG. 4. Error surfaces E, (iX) and E, (X) for the low-SNR received signal ted a 244-Hz gated sinusoid of 40-ms duration. The source
of Fig. 3. signature was recorded using a hydrophone mounted on the

source. The signature is shown in Fig. 7. The pulse was trans-
mitted as the source ship drifted over the bottom receiver
shown in Fig. 6. The horizontal range is estimated to be 1XW

B. Te efec of ncrasig am.
B. The effect of increasing a r The ocean bottom is characterized by a thin sediment

In order to obtain unbiased estimates, we need to go layer over a highly reflecting basalt as shown in Fig. 6. The
from the minimum of Eo (A) to the true minimum, i.e., that sediment varies in thickness from 0 to 20 m. For this prob-
of E_ (k). This is achieved by incrc".sing a. In Fig. 5, the lem, a 10-m sediment thickness was chosen. This environ-
smooth error surface corresponds to a = 0, i.e., for which ment was modeled with a fast field program, SAFARI.-2 ')2 '
the amplitudes are complex. As a increases, the norm of a, A broadband Gaussian pulse is transmitted in the model.
decreases and E. (A) is gradually transformed to the true The model predicts four paths shown in Fig. 6 (note that
error surface, as can be seen from Fig. 5. Fig. 6 is an artist's sketch of the four paths). Path D is the

direct path, path DB is the direct path reflection off the ba-
C. Performance with experimental data salt, path S is surface reflected, and path SB is the path re-
1. The experiment flected from the ocean surface and the basalt. The model

Transient data were gathered in the Atlantic Ocean on a ocean impulse response is shown in Fig. 8 with the four paths
bottom-mounted receiver in 780 m of water. The experimen- labeled. Pressure release surfaces such as the air/ocean inter-tal geometry is shown in Fig. 6. face cause a 180" phase shift in the reflected signal, causing

taeleggeometrysseenis FshownTh incivFig.gnl6.
The acoustic source was at a depth of 40 m and transmit- the negative peaks seen in Fig. 8. The received signal is

shown in Fig- 9.

2.2k ., \.[)/1X 12, 2.5 ~ . 2 j1.
04ý

2.1 o intermediate -0.2

a =0/ -041-105.

0.044048 0.05 00052 0054 0.056 0i o 5 015 o 02 025 0 0 1 0 1)4 1145 0 5

Relative Time Delay (secs.) Time (c(:,

FIG. 5. Effect of increasing a on the constrained error surface E,,(4). FIG. 7. The transmitted (source) signal: a 244-Itz gated sinusoid.
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FIG. 8. Broadband Gaussian pulse prop'gated with SAFARI, source ], ...

depth = 40 m. range = 0.1 kmn.
FIG. 10. The reconstructed receis.ed signal using channel parameters csti-

mated by the known-signal algorithm.

2. The known signal algorithm
Usin th knon sgnalalgritm prsened i Se. ~ transmitted signal, as well as the delays and amplitudes in

the received signal. These estimates, along with those ob-the time delays and amplitudes were estimated. With these taefrmhekonsgaalrimrepsnedn
parameters, the received signal was reconstructed (see Fig. Thble I.
10). The residual error between the received signal and the Thesiadsorepamtsagequecley
reconstructed signal is shown in Fig. 11. It is seen that the fit
is very good, indicating the accuracy of the estimates. The with the nominal values (244 Hz and 40 ins) of the actual
estimated parameters are shown in Table I in the column source signal. The channel parameters, too, agree with those

labeled "K.S. estimate." Note that the signs of the estimated obandythkow siallgrhmatouhheae
amplitudes need not necessarily dgree with that predicted by not in the same order. The first three paths iden tified by the

thechanelmodl (ee ig.8),whih sowstha th fist known signal algorithm correspond to paths 1, 3, and 4
thechanelmodl (ee ig.8),whih sowstha th fist found by the unknown signal algorithm. There are many

two amplitudes are positive while the second two are nega- different parameter sets for this problem which all give rea-
tive. The signs of the amplitudes were not constrained in this

algritm; oweersuc a onsrait wuldbeeasy to im- sonabty good fits to the data. The efficacy of the unknown
aloseuithm hoevr suchina pealt constriont wolesignal algorithm can be judged by reconstructing a signal

poseusig a addtioal enaly fnctonusing the estimated parameters, and computing the residual
3. Te unnow sigal lgorthmerror between the received and the reconstructed signals.
3. Te unnow sigal lgorthmThe reconstructed signal is formed by convolving the mod-

Next we applied the unknown signal algorithm outlined eled source signal (a zero-phase, 245-Hz sinusoid of 43-ms
in the previous section and estimated the parameters of the duration) with the estimated channel. Convolution is ac-

complished by multiplication in the frequency domain fol-
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FIG. 9. A record ofexperimental data containing a received signal with four FIG. II. The residual error (received signal minus reconstructed signal )

overlapping paths. for the known-signal algorithm
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TABLE I. Parameter estimates using the known signal and the unknown
s,, al algorithms,

K.S. e-';ate U.S. estimate 0,.

f (Hz) 245 04~

D (ms) 43 • o2

7,0, 1544' 0.2547 b

r,- 0.0360 0.0198

j- 0.0453 0.0360 "
r4 ri 0.0898 0.0435

a, 0.7913 0.8287 46
a, 0.4925 -0.1597
a- -0.1724 0.4926 -0.8

a, 0.0864 0,1810 - ...... .......
0 005 01 00h 02 021 01 035 04 i04'• ,

'Relative to the source pulse shown in Fig. 7. Tme ,ý-c,

'Relative to estimated source pulse starting at t - 0.
FIG. 13. The residual error between the source signal of Fig. 7 and the
optimum zero-phase sinusoid parametric model.

lowed by an inverse DFT. The corresponding residual error
is shown in Fig. 12. The fit in this case is poorer compared to
the known signal algorithm. The reason for this is explained multiple sinusoids, even for a = 0 the error surface would
in th.- next section. possess numerous local minima. We are curreitly develop-

ing a technique which will overcome this problem by parti-
V. DISCUSSION tioning the frequency axis into bins. An algorithm similar to

The biased error surface corresponding to the complex that given in this paper is used in each bin.
amplitud.s is easier to minimize as it is reasonably smooth. The rather large residual error obtained from the un-
For the one-path example of Sec. IV A, thb ýurface was seen known signal algorithm is now explained. This poor fit is not
to be unimodal, i.e., has no local minima. In higher dimen- due to any inadequacy in the unknown signal algorithm per
sions, the surface is still reasonably smooth as opposed to the se, but due to the fact that the actual source could not accu-
a = oo case, but is no longer unimodal. Hence, one has to rately be modeled as a perfect sinusoid. To demonstrate this,
begin any minimizing routine with a reasonable initial esti- we ran the unknown signal algorithm by considering the
mate forX to reach the minimum of E, (), to avoid getting recorded source to be the received signal and tried to model
stuck in a local minimum. We have found that the coordi- it by a sinusoid with M = 1. The estimated frequency and
nate descent algorithm provides good initial estimates. The duration for the source were found to be f= 243 Hz and
error surface being smooth for a = 0 is not true for an arbi- d = 44 ms, respectively. The residual error is shown in Fig.
trary signal. If, for example, the source signal consisted of 13. There is considerable mismatch at the beginning and at

the end of the source pulse due to gradual signal build up and
decay. This, therefore, is the reason for the spikes in the
residual error of Fig. 12, wherein the unknown signal algo-
rithm assumed a perfectly sinusoidal source.

0 9 VI. CONCLUSIONS AND FURTHER WORK

06, The residual error for the experimental data of Sec. IV C

0.4 using the known signal algorithm was quite small. We tried
the same procedure on a different experimental data set

0 -. which used a chirp signal as the source pulse. The bottom
Sreflecting surface was very rough in this case. The knowna 0.2 signal algorithm was unable to improve the fitting error be-

-041- yond a certain point. There still appeared to be considerable
signal structure in the error residual, indicating scope for a
better fit. We feel that this might be due to inadequacy of the
channel model given in Eq. (1); further work is being carried

0 .. . . .. out to verify this.
0 0.05 01 )15 02 0.25 0.3 035 04 045 0 S To summarize, in this paper we pointed out the impor-

Time cs) tance of constraining the amplitudes to be real. But the error

FIG. 12. The residual error (received signal minus reconstructed signal) minimization in this case turned out to be difficult. The corn-
for the unknown-signal algorithm. plex amplitude case is easier to solve but yields hiaNMd pa-
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